Variable Rate Irrigation for Mining Undepleted Soil Water

Derek Heeren, PhD, PE
Assistant Professor of Irrigation Engineering
Water for Food Global Institute Faculty Fellow
Coauthors: Himmy Lo, Joe Luck, Burdette Barker, Derrel Martin, Luciano Mateos

ICID World Irrigation Forum, November 8, 2016, Chiang Mai, Thailand
Potential Benefits of VRI

- Avoid putting chemical/liquid manure on waterways (create an “avoidance area”)
- Reduce pumping
 - Reduce energy costs
 - Reduce nitrate leaching
- Prevent pivot from getting stuck
- Reduce yield losses due to over-irrigation
- Reduce water application rates on steep slopes (reduce runoff/erosion)
- Reduce over-application with corner arms
- More yield with a given water allocation
Each of these tools detects a cause or symptom of spatial differences in optimal irrigation amount.

Tools can be used in combination.
Remote Sensing Imagery

Visible/RGB
- soil color
- plant greenness

(False-Color) Near Infrared
- leaf abundance

Thermal Infrared
- crop stress (not just water stress)

Ongoing research: using imagery to create prescription maps
Cosmic Ray Probes

• Stationary & mobile CRPs
• Spatial volumetric water content in top ~30 cm
• About 300 m diameter footprint
• Then create prescription maps

In collaboration with Trenton Franz

Side-by-side with CRP rover. Also towing a Dualem 21S for EM.
Hypothesis

• Focusing on soil properties…

• With conventional irrigation, soil water in some soils remains undepleted

• VRI could be used to mine this undepleted water
A Quick Review: FC & WP

FC (Field Capacity)

WP (Wilting Point)

R (Root Zone Available Water Capacity)

MAD (Management Allowable Depletion)
Prescription Map Based on MAD

- Spatial Map of R
- $MAD = 0.5 \times R$

VRI can be used to mine the differences in MAD across the field.

These two zones have more available water than the other zone, even though depletion is equal.

Barker et al. (2016)
Prescription Map Based on MAD

- **MAD**
- **SWD = Soil Water Deficit**
- **Irrigation**
 Mine ½ of the extra water in high MAD soils

\[I_{IMZ} = \frac{1}{2} (MAD_{max} - MAD_{IMZ}) \]

Use this map twice

Barker et al. (2016)
GIS Analysis of VRI Potential in Nebraska

- 49,224 center pivots analyzed
- USDA gSSURGO for soil properties
- Pumping reduction from mining undepleted soil water

2% of fields: pumping reduction > 51 mm
13% of fields: pumping reduction > 25 mm

Lo et al. (2016)
Field Testing

- Neutron probe measured high FC at the bottom of the hill
- Field-observed FC may be higher than lab-determined FC due to:
 - Layering
 - Compacted layers
 - Water table

Lo et al. (2016)
Field Testing

• For this field, R correlated to elevation
 – R did not correlate with EC

• gSSURGO provides a conservative estimate
 – 22 mm pumping reduction (field measured R)
 – 9 mm pumping reduction (gSSURGO)

Lo et al. (2016)
Online Map Tool for VRI

- Nebraska website for field-specific pumping reduction and economics

Lo et al. (2016)
http://heeren.unl.edu/map

International online VRI savings calculator:
https://www.precisionirrigation.co.nz/save
By Precision Irrigation
Disclaimer: Reduced pumping ≠ reduced consumptive use

Watershed Water Balance

Streamflow – Aquifer Decline = Precip – ET

Derrel Martin
Final Observations

- Prescription maps can account for soil properties to mine undepleted soil water
- This method can reduce pumping costs and nitrate leaching
- Increasing yield is likely to be the best way to economically justify zone control VRI
- Future research should develop a VRI DSS that integrates remote sensing with soil properties
Acknowledgements:

Water, Energy, and Agriculture Initiative (WEAI)
Keith Miller, Tyler Smith, Alan Boldt, Phil Christenson, John Christenson

Additional VRI Resources:
http://heeren.unl.edu/
Importance of a System Evaluation

- Pivot orientation off by about 4° at orientation of test
- Important for avoidance areas, may not be as important for practical applications of VRI

Barker et al. (2016)
VRI System Checklist

• For speed control and sprinkler control (one-time):
 • Pivot point GPS coordinates
 • Affects the calculated position of the pivot

• For sprinkler control only (at least once per season):
 • Communication of nodes
 • Check VRI panel records
 • Operation of solenoid valves
 • Use pulse mode for testing and walk along pivot

• Response of variable frequency drive (if installed)
Irrigation Scheduling for VRI

- Soil moisture sensors
 - One or more per management zone in representative location(s)?

- Soil water balance
 - Need to know soil properties for each zone

- Irrigation trigger for each static zone
 - Watermarks: refer to extension publication on relating centibars to depletion fraction in different soil types
 - More research is needed in general
Number of Zones

- Developing more zones might not be better than developing fewer zones
- More zones require more management
- Research on four fields showed that compared to ten zones:
 - For speed control, four zones captured 83-95% as much variability in EC_a
 - For sprinkler control, four zones captured 85-94% as much variability in EC_a
VRI Investment/Affordability

- Compare present value of VRI benefits with VRI total cost
- If VRI for 124 ac costs $20,000 (USD) and is paid for entirely by one benefit:

<table>
<thead>
<tr>
<th>Category of VRI benefit</th>
<th>Example price</th>
<th>Annual field-average change at breakeven</th>
</tr>
</thead>
<tbody>
<tr>
<td>irrigation cost reduction</td>
<td>$3/ac-ft of gross irrigation</td>
<td>-78” of gross irrigation</td>
</tr>
<tr>
<td></td>
<td>$117/ac-ft of gross irrigation</td>
<td>-2” of gross irrigation</td>
</tr>
<tr>
<td>agrochemical cost reduction</td>
<td>47¢/lb of N</td>
<td>-44 lb/ac of N</td>
</tr>
<tr>
<td></td>
<td>66¢/lb of N</td>
<td>-32 lb/ac of N</td>
</tr>
<tr>
<td>yield benefit increase</td>
<td>$5.30/bu of corn at 15.5% moisture</td>
<td>+4 bu/ac of corn at 15.5% moisture</td>
</tr>
</tbody>
</table>

Based on economics at the farm gate, increasing yield is the most likely way to pay for a zone control VRI system

(interest rate of 5% and amortization period of 10 years)